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Coupled and decoupled methods for solving the Navier—Stokes equations are com-
pared as underlying smoothers for a multigrid algorithm. Numerical results for the
benchmark problem of the lid-driven cavity confirm that residual reduction factors
per multigrid cycle for the coupled method are superior to those of the decoupled
method. The line-wise implementation of the coupled method is shown to be more
efficient than the cell-wise while retaining good convergence rates and is the fastest
method for this problem. Both approaches are applied to the more challenging prob-
lem of homogeneous and inhomogeneous viscous flow past obstacles (a vertical
barrier and a cosine-shaped bump), where the flow is largely unidirectional and good
convergence rates for the coupled method can now only be achieved by solving the
coupled equations in vertical lines. The convergence rates of both methods are shown
to deteriorate for these flows, compared with those for the lid-driven cavity, but the
deterioration is generally less for the decoupled method, however, and the relative
efficiency of the decoupled method means that execution times are significantly less
than those required for the coupled method. In the case of stratified flows convergence
difficulties are found for the coupled approach when a high order discretisation is
used for the density transport equation. Strategies developed to overcome this, based
on the use of double discretisation techniques, are describedogs Academic Press

Key Wordsincompressible Navier—Stokes, multigrid, stratified flow.

1. INTRODUCTION

Since the pioneering work of Brandt [1] multigrid methods have become an acce
numerical procedure in many fields on application and certainly that of incompres:
fluid mechanics. Along with several decisions to be made regarding the discretisatic
the continuous problem is the decision concerning the nature of the smoother used
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582 PAISLEY AND BHATTI

multigrid algorithm. Of the many variants proposed, two basic approaches have emer
namely decoupled (segregated) and coupled (desegregated). In the former approach, uj
to each velocity are computed over the entire domain using the respective momen
equations in turn and the localised coupling between the velocities, and the pressure is
achieved using the continuity equation. Brandt’s DGS (distributed Gauss Seidel) met
[2] is an early example of a multigrid method of this type, although the most widely us
now are based on pressure correction methods, with the SIMPLE [3] algorithm be
the best known. In the latter approach, on the other hand, all flow variables are upd:
simultaneously in localised sets and global coupling is then achieved by sweeping c
the computational domain in a preordered manner as in [4]. Although developed somev
later than the pressure correction methods, coupled methods were immediately incorpol
as smoothers in multigrid algorithms and several demonstrations of the effectivenes
the SCGS (symmetric coupled Gauss Siedel) method were given for the lid-driven ca
problem [5, 6] and for more general flows in two and three dimensions [7, 8]. Results
corresponding multigrid computations for the SIMPLE pressure correction method follow
[9, 10] and numerous computations using both approaches have been reported since
for example, [11-14] for those using the coupled approach and [15-17], the decouy
method.

Recently multigrid computations were reported for the Navier—Stokes equations |
scribing density-stratified flow past two-dimensional obstacles using the SIMPLE press
correction method as smoother [18]. This work represents one of the first applications
multigrid method to flows which are primarily of meteorological interest. Multigrid meth
ods had been applied previously to flows described by the same equation set but in n
simpler geometry [19], or to flows in more complex geometry but only requiring the sol
tion to a simpler model, such as a Poisson equation [20], for example. Grid-indepenc
convergence rates were demonstrated in [18] for computations of steady and unsteady
past a vertical barrier and a cosine-shaped obstacle, under conditions of neutral and s
stratified flow, at low and high Reynolds number. In the absence of consensus on the i
of choice of the smoother, the SIMPLE pressure correction method was chosen arbitra
largely for reasons of convenience. The purpose of this paper is to provide a compar
between those results and new results obtained with a coupled method, with a view to
viding some guidance on the matter, at least for these kinds of flows. The question is
merely academic, for flows of practical interest in many fields, including meteorology, ¢
three-dimensional, time-dependent, and turbulent, and each of these generalisations
to reduce the effectiveness of multigrid. It is clearly important to be using the most effect
multigrid smoother when computing flows of all kinds, but especially those for which tt
benefit of multigrid is expected to be least.

The comparisons previously made are few and somewhat limited in scope. A pract
and theoretical comparison for the lid-driven cavity [21] concluded that the coupled ¢
proach had consistently better smoothing rates than the pressure correction approach
generally led to faster execution times for the coupled method for a given level of conv
gence for the standard driven cavity problem, although for the higher Reynolds numt
and the finest grid there was little to choose between the methods. Other comparison
the same test problem [22] confirmed this. The flows of interest here, however, are q
different from those of this idealised test problem which is discretised on a square unifc
grid and has simple boundary conditions. Flows past obstacles are largely undirecti
and necessitate grids that are nonuniform and which may contain cells of high aspect r
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Early attempts with the cell-wise implementation of the coupled method (SCGS) for s
strongly aligned flows in ducts [7] suffered from poor asymptotic convergence rates.
such flows, however, the coupled method should be implemented in a line-wise manne
that variables belonging to entire lines of cells are updated simultaneously. Implement
this way, it has been demonstrated that the coupled method can overcome the poor c
gence properties associated with the cell-wise approach, and both the SCAL (symmetri
coupled alternating line) [12] and CLGS (collective line Gauss Seidel) [23] methods ach
this. Although there are other methods of implementing a coupled approach, such as
based on ILU factorisation, the results of the comparison in [23] suggests that the line-
sweeping is probably the most efficient.

Given the apparent superiority of the coupled approach over the decoupled for the
driven cavity problem, the question naturally arises regarding which is best when fl
are strongly aligned. The conclusion in [22] appeared to be that for flow over a backw
facing step the line-wise coupled approach was consistently faster than the SIMPLE pre
correction method. The outcome of such comparisons may well be problem-dependen
the relative performance of the pressure correction approach and the line-wise cot
approach implemented in the context of neutral and buoyant flow past obstacles is the
subject of interest in this paper.

The addition of an extra transport equation should not in itself affect the performanc
a multigrid algorithm, and indeed, convergence rates in terms of cycles required for cor
gence in [18] for stratified flows were similar to those for the corresponding neutral fl
However, for one set of parameters a convergent multigrid iteration could not be obtai
Further work has shown that this was partly related to the small diffusion coefficien
the transport equation of the density equation, and the consequent lack of ellipticity in
discrete equations. This has been overcome subsequently using the ideas of double di
sation [24] and in fact this technique appears to be an essential element for the succe
application of the coupled method in this context.

The organisation of the paper is as follows. The mathematical formulation of the flc
under consideration is described first in Section 2 and the underlying numerical procec
and smoothers for a single grid computation are given in Section 3. Section 4 contains d
of the multigrid algorithm and the results of the investigations are discussed in Sectic
The paper ends with some conclusions in Section 6.

2. MATHEMATICAL MODEL

The mathematical model under consideration has already been given in [18] and is
described here briefly. Confining our attention to laminar flow and using the Boussin
approximation, in which density variations are neglected in the advection terms in
momentum equations, the equations of motion describing steady two-dimensional de
stratified flow are

au au ap 1 (d%u  d%u
U—4+W—=—"--+—9—+— 1
X + 9z aX Re{ x2 922 @
oW oW ap 1 1 (9°w  9%w
U—4+W—=—--— S0+ — — + — 2
ax oz iz F * Re{ X2 9z2 @)
au 9
u W -0 (3)
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FIG. 1. Computational domain and boundary conditions for flow over smooth geometry.
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Equations (1)—(4) respectively express conservation of momentum in the two coordir
directions, the incompressibility constraint, and the transport of the scalar variable resy
sible for changes in densityy, s the Froude number, given by, & U/Nh, where U is the
freestream velocity, h is the obstacle height, and N is the bouyancy frequency (constan
a linear density gradienty. is the density scalar given biy=D(p — po)/hAp, wherep is
the physical density andp the magnitude of the density change over the nondimension
domain height D/h. Sc is the Schmidt number (the ratio of viscous to diffusive effects) &
is taken to be 1000. The equations have been nondimensionalised by U, h, and the refel
densitypg.

For stratified flows of finite depth, there is an additional controlling parameter, namely
defined by K= D/ hF,, which is the ratio of the speeds of the fastest internal mode and t
freestream. (Neutral flow corresponds to an infinite Froude number and.)KFor buoyant
flow when 0< K < 1 all lee waves are swept downstream, while for K lee waves may
existin the wake of an obstacle and the flow may become unsteady, in addition [25]. The «
K =1 is the transition between these two regimes. It was shown in [18] that the SIMP!
algorithm was generally found to be an efficient smoother over the rapge 8 1.

The geometry of interest here is flow in a channel where the ratio of channel deptt
obstacle height is given by /[ =5. The computational domain and boundary condition:
are the same asin[18] and are illustrated in Fig. 1 for the case of smooth geometry. Unif
horizontal velocity and a linear density profile are specified at inflow, while simple ze
gradient conditions are applied for all variables at outflow. A “moving wall” condition i
applied at the top of the domain. Two obstacle shapes have been used: a vertical barrie
which the computational grid is Cartesian, and an obstacle with smooth profile given
h(x) = 0.5(1 + cogxrx/1.8)) for which the grid is curvilinear. No-slip boundary conditions
are applied to the obstacle, and zero stress conditions upstream and downstream. In the
of the cosine-shaped obstacle, no-slip conditions are appliegkffer8, modelling the
geometry of an obstacle mounted on a base plate often used in laboratory experiments
The initial condition for all computations is that of uniform horizontal velocity, and for th
stratified cases the initial density profile varies linearly with z.

Laboratory experiments such as those described in [26] have shown that stratifica
in the flow over a two-dimensional obstacle for<Kl acts to suppress vertical motion
in the turbulent wake and that lee side separation is inhibited as a consequence. £
ranges from zero to unity the separation length reduces from its value in neutral fl
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leading to a fall in the value of the corresponding pressure drag. It was shown in |
that these qualitative features of the real turbulent flow could be reproduced in the re
of low Reynolds number computations with the laminar Navier—Stokes equations fol
appropriate choice of Reynolds number. Although no formal comparison of quantities <
as separation lengths and drag coefficients has been made, the low Reynolds numbel
described here are, thus, not disimilar to the real flows.

3. DISCRETISATION

Expressed in the form of steady two-dimensional convection—diffusion with source te
the transport equations in the set (1)—(4) are

d 1) ad g
—(U¢)+—(W¢) ax<rﬁ>+5( 82)+S ®)

wherep may stand for u, w, of#. Discretising on rectangular Cartesian grids with contre
volumes of area\V and using the finite volume approach gives

> [(uw—rg—@m— (W(p—Fi—i)Ax} = SAV, (6)

where the summation is taken over the four sides of the control volume. Staggered |
are used with the usual arrangement of variables and associated control volumes, F
and the problem reduces to that of providing estimates of flow quantities on cellBies.
constant for laminar flows and local interpolation is used for u and w, while the diffus
terms are obtained by standard two-point differencing. The advective terms, on the
hand, are dealt with using a second-order flux-limited scheme designed to prevent spu
oscillation, originally developed for unsteady inviscid compressible flows [27] and adaf
as follows [28].

The flow across cell boundaries is considered to be one-dimensional in directions no
to the cell faces. The value of the flow variable (u, wpQrat the centre of the cell under
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FIG.2. Staggered grid arrangement and control volumes for (a) the horizontal and (b) the vertical mome!
equations.
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consideration is denotefgh, with ¢, andgy denoting the corresponding values at the centre
ofthe cellsimmediately upwind and downwind, respectively. The estimate on the downw
cell face,¢r, midway betweewp, andgy is based on the ratio of differences,

- p—du
%= b= du

and is taken to be the harmonic mean of the values given by averaging neighbouring ve

(central differencing) and second-order upwind interpolation, that is,

1 - 1 A
¢r = §(¢p +¢a)9p + §(3¢p — o)A — dp).

This can be expressed as

b1 = Pp + (¢a — bp) b,

from which the monotonicity property is easily deduced, sigge< ¢ < ¢q is clearly
satisfied if O< g?)p < 1. In this form the estimate now consists of the value immediatel
upstream (“first-order upwinding”) plus a second-order flux-limited correction. Values
¢3p outside the range 8 q?)p <1 correspond to extreme points in the flow, and only the valu
immediately upstream is used.

By collecting the convective and diffusive contributions from the four cell faces in th
manner Eq. (5) can be expressed in the form

Bpapq = Z amn®mn + %q, (7)

where the summation is taken over the centres of the four neighbouring cells and
multiplying coefficients contain the convective and diffusive flow rates. The source te
includes the second-order corrections from the convective scheme (defect correction)
in the case of both momentum equations, the pressure-gradient term is discretised t
two-point differencing and, in the case of the vertical momentum equation, the bouyal
source term, too.

A sequence of grids is defined where the maximum number of lines on giiNJN= 1
corresponds to the finest grid) in the x- and z-directions are IMAahd KMAXy,, re-
spectively. To avoid wasteful use of storage space, single-dimensional arrays are us
store all variables in rows in the x-direction, so that consecutive elements contain horizo
neighbours in general. A pointer system is used to address the elements at position (
on grid Ny of the form

M =1+ (K -1 x IMAX \, +NGy,,
where NG, is a summation term over the grids defined by
NGy =0, NGy, = NGy,-1+ IMAX y,_1 x KMAX n,-1, Ng > 1.
A Cartesian grid is used for the flows over the vertical barrier and care is taken to ens

that the location of the barrier coincides with the same vertical line of horizontal velociti
on each of the grids in the sequence. For flows over smooth geometry, however, a sir
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FIG. 3. Control volume for the continuity and density transport equations.

transformation was used to stretch the vertical coordinates. This introduces a volume
factor and other metric terms into the momentum and scalar transport equations and
tional source terms arising from the curvinlinear coordinate derivatives. Care must be t
in this case to ensure that the portion of the lower boundary, where no-slip conditions
applied, is the same on all grids.

Smoothing Algorithms

This paper focuses on two popular current methods for solving the Navier—Stokes e
tions discretised as above. Discussion of both the decoupled and the coupled me
proceeds best by reference to a typical continuity control volume, Fig. 3. We suppose
the exact discrete values u, w, and p satisfy the discrete steady momentum equations

&L 1 okUi-1/2k = Z Anntmn + AiL 1o (Pi-1k — Pik) + SLq 2k (8)
&'y 1/2kUi+1/2k = Z Anntmn + Al 12k (Pk — Pitak) + Sk 9
A1 Wik-12 = > _ BmaWinn + Al 2 (Pik-1— Pik) + Sk_1/2 (10)
it 1/2Wik+1/2 = Z AmnWmn + A 1/2(Pik — Pik+1) + S 1725 (11)

where AL, 5 = AViL, 5/ AXL; 5 etc. and the source terms have been multiplied by tl
areas of the respective control volumes. The discrete continuity equation is

(Uipr2k — Ui—1/26) AZ + (Wiks1/2 — Wik—1/2) AX§, = 0. (12)

In the case of stratified flow the sources in the discrete vertical momentum equat
(10), (11) are modified to include the bouyancy source term discretised as

AVi121

I
= (Wik—1 + Vi),
R 2

and the discrete scalar transport equation is solved, in addition,

AkPik = Y ngPmn + Si- (13)
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Decoupled Smoother (SIMPLE)

The SIMPLE (semi-implicit method for pressure linked equations) pressure correct
algorithm [1] has been discussed many times. Briefly, expression (7) comprises a diagor
dominant set for each of the variables u, w, @d@he coefficients in the discrete momentum
equations are calculated for the entire domain and, using an estimated pressure field,
are solved in turn via an ADI sweep to yield updates to the current global velocity fie
The rest of the iteration, which is the bulk of the computational work, provides the localis
coupling. Relations between corrections to velocities and adjacent pressure values
Fig. 3) are derived from the discrete momentum equations of the forms

A1)k Ak
U 1ok = ql 11/2 (Pi_1k = Pi)s Wik_12 = a: 1/2(p|k 1= P (14)

and the discrete continuity equation is written terms of velocity corrections,

(U126 = U_1/2) AZi + (Wi 172 — Wik_1/2) AX = —R§, (15)

where R, is the residual of the continuity equation for the current velocity field. Relatior
(14) are substituted into (15) to derive a Poisson-type equation for the pressure correcti

AP — ZAmnp;nn = —R§. (16)

Equation (16) is solved using four ADI sweeps to yield the pressure corrections, wh
are used to update the velocities through relationships (14). This completes one pres
correction iteration, and in the case of stratified flows the additional transport equation (
would now be solved. For flows with an internal boundary, such as the vertical barri
velocities on the barrier are forced to zero by appropriate modification of source ter
and neighbouring equation coefficients are ammended as necessary. Underrelaxati
required for a convergent iteration, with typical values for the momentum and dens
transport equations being 0.7 and 0.9, respectively. The pressure correction equation
is not underrelaxed, but only a fraction of the resulting pressure corrections is added tc
current pressure field, the value of which is typically 0.3.

The algorithm is summarised as the sequence of the following steps over the er
domain:

1. Calculate the coefficients for each u-momentum equation. Solve the equations glok
and update the value of each u-velocity.

2. Calculate the coefficients for each w-momentum equation. Solve the equations g
ally and update the value of each w-velocity.

3. Calculate the current continuity residuals. Solve the pressure correction equa
globally and calculate the corresponding velocity corrections.

4. Update the value of each variable.

5. If stratified calculate the coefficients for the density transport equation. Solve t
equations globally and update the value of each density.

Coupled Smoother—Cell-wise (SCGS)

The starting point for Vanka's SCGS (symmetric coupled Gauss Seidel) method [5] is
equation set (8)—(13). The current velocity and pressure fields, denoted here with aster
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are deemed to satisfy these equations up to a residual, so that (8), for example, is wri

Al Uk = Z nnUmn + AL 12k (P 1k — Pl + Sajak + RiLyak (17)
Corrections to 1, ,, and [ are sought to produce zero residual, so that
alyali-1/2k = Z nnUmn + ALk (P 1k — Pi0) + Sy ok (18)

and subtraction of (17) from (18) yields an equation linking local velocity and press
corrections of the form

dl 12U 12k + ALy Pk = —RiL 12 (19)

The equations for the three other velocities associated with the continuity control volt
are derived similarly, and, along with the continuity expression (15), the set of five equat
for neutral flow is written in the following matrix form

A1)k 0 0 0 AL Ui_1/2k —R 12«
0 & 12 0 0 —Alk| | Ui1jax —Ri 101
0 0 &1/ 0 Ak_1/2 Wic_12 | = | —Rikz1y2 | - (20)
0 0 0 12 Ak | Wike2 —Rii1

—AZ Az —AXi AX 0 Pik —Ri

The matrix is inverted analytically by treating it as bordered to yield the required upds
which are immediately added to the values of the current solution. Underrelaxation is
plemented by adding a fraction of the changes calculated to the respective field variabl
typical values for the fraction being in the range 0.7-0.9 for the velocities and 0.8-1.C
the pressure.

The case of stratified flow would be similar, with the additional variable increasing
dimension of the matrix as

ERT 0 0 0 A1 0 7 [u_yz] [—RIL 12k
0 &1 0 0 —Ail 10k 0 Uit 12k —Ri 12
0 0 _1/2 0 Ak-1/2 Biﬂk—l/z Wik_1/2 I Rik_1/2
0 0 0 12 A2 Bliie| | Wik ~Rii12 ’
—AZi  Azg  —AXE AX 0 0 Pik —R§
0 0 0 0 0 4 L P | —R% |
(21)

where B ;, = AVl ,,/2F and By, 1, = AV}, ; /2. This matrix too is easily in-
verted by first calculating the density changgs= —R} /&) and then rewriting the system

as

a1k
0
0
0

C

0

&)k

0
0

C

0
0

12

0

C

0 ALl Ui_1/2k

0 —Ail1ok| | Us1jex

0 Ak—1z | | Wikeapz | =
12 —Aksrz| | Wik
AXi 0 Pik

R 12k
R 12

[
—Rik_1/2 — Bik_1/2% | »

»
- R}ﬁ+1/2 - Bik+1/219i/k

—Ri
(22)
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so that the only difference from the case of neutral flow is a change to the residual term:
the right-hand side of the vertical momentum equations. In fact the cell-wise SCGS met|
was never used for stratified flows over obstacles, but the principle has been describe
illustrate the procedure for the linewise approach which was used and is discussed lat

The algorithm for neutral flow can be summarised as the sequence of the following st
for each continuity control volumes in the sweep:

1. Calculate the coefficients and the residuals of the u-momentum equation for b
u-velocities.

2. Calculate the coefficients and the residuals of the w-momentum equation for b
w-velocities.

3. Calculate the current continuity residual.

4. Invert the matrix and update the values of all variables.

Although the philosophy of the SCGS method is entirely opposite to that of the SII
PLE method, there are similarities between the two. For example, both methods share
feature that the velocities are updated twice while the pressures are updated once, an
local pressure/velocity coupling is achieved by a similar relationship in each case whic
based on the discrete momentum equations (compare (19) with (14)). In the case of SC
however, immediate local linkage is provided between variables and the global couplin
achieved by sweeping through the domain in a prescribed manner, such as forward le)
graphic ordering followed by backward. Continuity control volumes are visited in turn au
all the coefficients of the transport equations are recalculated to take account of the upc
values of flow variables. The bulk of the work is in assembling the equation coefficier
needed to calculate the current value of the residuals, and this outweighs the overhe:
inverting the matrix. An indication of the work required is obtained by considering tt
number of flux evaluations needed to calculate a set of updates for a single continuity
trol volume. For a two-dimensional rectangular grid the horizontal momentum equati
at two neighbouring points requires flux evaluations at each of the four faces of the t
respective control volumes. One of these faces is shared, however, so the total nur
of evaluations is seven. Correspondingly, the vertical momentum equation also requ
seven, so the total number of flux evaluations for one set of updates is 14. For a square
containing 1 control volumes, therefore, 14flux evaluations are required for one sweep
across the grid, while for the usual forward and backward sweep, this doubleSt@Rgn
is considerably greater than the number of flux evaluations required for one sweep of
decoupled method, where, since the values of all flow variables are considered to be a
same stage of the computation, all cell faces between neighbouring control volumes
be considered shared. On the same grid, therefore, each momentum equation require:
2r? flux evaluations, combining to give a total of%4rma factor of seven fewer than for the
coupled method.

Coupled Smoother—Line-wise (CLGS)

Solving the coupled system in a line-wise fashion can be implemented in several we
The SCGSI/LS algorithm of Shaal.[29], for example, solves only for the pressures along
gridlines and this appeared to be more efficient than the cell-wise approach for the dri
cavity problem. Although this algorithm was applied successfully to flow over a backwe
facing step [30], the more conventional view [31] is that for unidirectional flows all variable
should be updated simultaneously in lines, as achieved in the SCAL (symmetrically couy
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alternating line) [12], CLGS (collective line Gauss Siedel) [23] algorithms, as well as t
described (but only briefly) in [22]. SCAL differs from CLGS only in the sweeping patte
used to produce updates—alternating zebra in the former and line-Gauss-Seidel in the
Although algorithms of both these kinds have been tried in the present work, the bes
been found to be the CLGS method implemented by sweeping in vertical lines, anc
description that follows is in these terms.

With reference to Fig. 4, the variables along tRevertical line are grouped in sets of
four and are written as the vector

[~ . (Wik—s/z, Ui—1/2k—1, Ui+1/2k—1, pik—l)» (Wik—l/z, Ui—1/2k, Ui+1/2k, pik),
T
(Wik+1/2, Ui—1/2k+1, Ui+1/2k+1, pik+1), .. ]

The form of the discrete update equations for the vertical momentum equation cha
slightly with vertically adjacent pressures now linked, while the form for the horizon
momentum equation remains unchanged. In the case of neutral flow the equations al
vertical line to be solved simultaneously have the following form, with the right-hand s|
given by the vector of corresponding residuals:

6;’&73/2 0 0 +A‘\IIZ—3/2 | 0 0 0 0 |
(U 0 Alyoer |0 0 0 0 [
0 0 4]+1/2k—1 _Aiu+1/2k—1 I 0 0 0 0 [
—AX_ —AZy_, AZ 0 | Axg_, O 0 0 |
0 0 0 AV, &, O 0 +AY,,| O 0 0 0
0 0 0 0 | 0 &,y O AL, | O 0 0 0
0 0 0 0 | 0 0 &yp-Alml O 0 0 0
0 0 0 0 | —AXS —AzZ, AZ 0 | AXG 0 0 0
0 0 0 Az | 8 0 0 +A}{<\/+1/2
I 0 0 0 0 [ 0 dlyg1 0 Al 121
I 0 0 0 0 ‘ 0 0 #r1jor1 Alryaci
| 0 0 0 0 | —AXS ., —AZi, AZ 0
T
Wic_3/2 —Rik_s/2
U_1/2k1 —R a1
Ul 1/2k-1 Ry
p:k—l _Rﬁ(—l
Wi_1/2 —Ri_12
Uy | | ~Ritua
X u’ = _RU
i+1/2k i+1/2k
pi,k 7Rﬁ<
W12 —Riki12
U1 ok41 R0
Ui 10kt —Rly12041
Pii1 —Ri

The structure of this matrix is block-triadiagonal and is solved using a specially writ
routine based on the Thomas algorithm. In terms of flux evaluations, more cell faces
be considered shared than before and the work count reduced, compared with the
wise version. In the vertical implementation described here, for example, the horizc
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FIG. 4. \Variables to be updated when the equations are coupled in vertical lines.

momentum equation is required in two neighbouring lines of n cells. Of the 8n cell fac
involved, 3n are shared, so only 5n flux evaluations are required. The vertical momen
equation, on the other hand, is required at points in a single line of n cells, requiring 3n f
evaluations. Combining these gives 8n evaluations for a set of changes along a line of
and, hence, 8rfor the complete grid, or 16rfor a forward sweep followed by a backward

sweep. The work required to solve the matrix system of equations is about the same as
of the cell-wise approach (46 floating point operations per continuity control volume

each case), but the reduced number of flux evaluations represents a saving over the co
method. In practise, however, the benefit of this is offset by the fact that array variables
required to store the coefficients in the line-wise implementation, with additional associa
computational cost, while they are not for the cell-wise.

In the case of density-stratified flow, the method is modified in a manner similar to tt
described for the cell-wise version. The buoyancy source term in each update equatiol
the vertical momentum includes vertically adjacent densities while the update equations
the densities themselves form a tridiagonal set. The structure of the middle row of the bl
matrix above becomes

0 0 0 —-Ay, B;i—l/z ‘ 5\%1/2 0 0 +Ak-172 Bii—l/z | 0 0 00 0
0 0 O 0 0 | 0 q“fmk 0 Ai{l/2k 0 | 0 0 0 O 0
0 00 0 0o | o 0 dup Alym 0 | 0 000 0
0 0 O 0 0 | —AXS —AZ AZ 0 0 | Axf, 0 0 O 0
0 0 O 0 4, | 0 0 0 0 4 | 0 0 0 O ¢L1

The density updates are easily calculated and used to modify the residuals in the ver
momentum equation as before, and the solution proceeds as for homogenous flow. Ur
relaxation is again achieved by adding a fraction of the computed changes as describe
the cell-wise version.

The algorithm can be summarised as the sequence of the following steps for each lir
continuity control volumes in the sweep:



COMPARISON OF MULTIGRID METHODS 593

1. Calculate the coefficients and the residuals for the u-momentum equations for
u-velocity.

2. Calculate the coefficients and the residuals for the w-momentum equations for
w-velocity.

3. Calculate each current continuity residuals.

4. Ifstratified calculate the coefficients and the residuals for the density transport equi
for each densities.

5. Invert the block matrix and update the values of all variables.

4. MULTIGRID ALGORITHM

The procedures used were given in [18] and only a brief outline is given here. Deno
the linear and nonlinear discrete operators on the fine grid tg bad N,, respectively, the
discrete horizontal momentum equation (8), for example, can be written

Nhuh 4+ Lhpnh = 0. (23)
The current approximations, andp;, satisfy Eq. (23) to the extent of a residi,
NhUh + Lhph = ﬁh, (24)
and subtraction of (24) from (23) yields
Nhtn = Nilih — Lnpf, — Rn, (25)
where p, = pn — Pn. Equation (25) is the basis of the coarse grid equations. Coarse grids
generated so that a coarse grid continuity cell is the sum of four fine grid cells—see Fi

Flow variables and residuals are transferred to the coarse grid via a restriction ogérat
(weighted means for flow variables and area-scaled sums for residuals) so that the c
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FIG.5. Relationship of fine and coarse grids—a continuity control volume on the coarse grid is compose
four on the fine grid.
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grid momentum equations take the form
N2ntizh = Nonl2'Th — LanPhp, — 12"Rn. (26)

Starting from the initial conditionsy = 12, and By, = 0, coarse grid iteration using any
of the smoothers yields new coarse grid velocitigsand coarse grid pressure corrections
P The changes in the coarse grid velocities and the pressure corrections are then tranf
back to the fine grid using prolongation operat}y (bilinear interpolation) and the fine
grid solution is updated as

uh = Uh + |2h(U2h - |ﬁhah)v P, = Pn + II21hp/2h' (27)

Convergence on the fine grid implies that the residual forcing term in (26) is zero, and
equation is satisfied by>y= Iﬁhﬁh and g,, = 0, in which case the calculated changes ar
zero and interpolation leaves the fine grid solution unchanged.

Both the decoupled and coupled smoothers proceed on the coarse grid in a manner si
to the implementation on the fine grid described in the previous section. Each procec
needs the modification to allow the use of curvilinear grids described in [18]. The continu
expression corresponding to (15) for coarse grids should be

Conly, = —RS;,, (28)
where the right-hand side is given by
RS, = Conuy, — Conl 2"l + 12'RE, (29)

where the first term on the right-hand side represents the continuity residual of the cur
coarse grid velocity field. As explained in [18], when Cartesian grids are used, the restrici
operator preserves mass fluxes, so that the last two terms here cancel. When grid
curvilinear, however, mass fluxes are not preserved, and all three terms must be evalu
When convergence is achieved on the fine grid (the last term on the right-hand sid
zero), no changes result from the coarse grid momentum equations, leaving the contir
residuals unchanged from their values calculated after restriction (the second term or
right-hand side), and hence, a zero right-hand side as required.

As mentioned in the Introduction, convergence for stratified flows was only obtained
some cases by utilising a technique known as double discretisation [24], where the disc
operator used to approximate the differential equation is kept distinct from that usec
smooth the solution to the discrete equations so generated. That this is feasible arises
the observation that the solution to the discrete fine grid equations is governed solely
the operator used to generate the fine grid residuals. In a multigrid scheme these resic
are restricted to the coarse grid, but the discrete operator of the coarse grid equation-
N2p on each side of (26)—may be chosen in principle to be anything that will smooth t
error. This idea can be applied on the fine grid too, as part of a multigrid cycle but r
necessarily so. All that is required is that the fine grid equation is written as in (25),
that the residuals on the right-hand side are generated using the scheme desired fc
fine grid solution, while the operatoryNnay be chosen to be anything else. What is typi-
cally chosen here is to generate the fine grid residuals for all transport equations using
Van Leer scheme described earlier, and then to use a much more dissipative scheme
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as first-order upwinding in the coarse (or fine) grid density equation. Clearly there is
advantage if a convergent iteration can be obtained without doing this, but in other ¢
this technique can be used to generate a multigrid iteration which converges to a sol
of desirable accuracy.

5. RESULTS

Lid-driven Cavity

The relative merits of the smoothing algorithms were first tested using the stanc
problem of the lid-driven cavity. Although only a model problem with many idealisms n
found in practical flows, this exercise enables comparison to be made with previous
and the present implementations to be validated.

Prior to the discussion of the multigrid convergence rates, however, we give an indice
of the accuracy of the discretisation scheme. Although the solution to the lid-driven ca
problem has been given in detail elsewhere, a simple measure sometimes used to gL
the overall accuracy of a solution is the maximum negative velocity on the centre-line of
cavity. Figure 6 shows this quantity obtained in the computations here plotted agains
square of the grid spacing for the two cases-R200 and Re= 1000, and four grids, with
32x 32,64x 64, 128x 128, and 256¢ 256 nodes. Shown for comparison are Vanka’s [E
data for the hybrid discretisation on staggered grids as here, and Lien and Leschziner
data for the MUSCL and QUICK schemes on a collocated grid. The higher order sche
demonstrate second-order behaviour, while the hybrid scheme clearly does not. O
higher order schemes, Van Leer’s harmonic scheme would appear to be less dissipativ:
the others in that the peak values attained with this scheme are consistently higher
those of the other schemes for both Reynolds numbers.

The convergence rate of the SIMPLE method has been compared with four impleme
tions of the coupled approach. These are SCGS, CLGS implemented in vertical lines
noted CLGS-V), CLGS implemented in horizontal lines (denoted CLGS-H), and SC/
Forward and backward lexicographic sweeping is used for SCGS, while symmetric sw
ing is used for CLGS (that is, a sweep in one direction followed by another in the reve
direction). The order of the sweeping in SCAL is even horizontal lines then odd horizol
lines followed by even vertical lines then odd vertical lines. To facilitate the comparis
of the rates of convergence with the work of other authors we employ the commonly t
convergence criterion that the kesidual,

SURYH2 + S(RY)2 4 Y (RO2] 2

R= :
3 x IMAX y, x KMAX g,

reach 10“. (Here the individual equation residuals are normalised by control volume ar
so that the dimensions are those of the original continuous equations.) Convergence ds
the methods is summarised in Table 1, where the number of cycles required for converc
is given, along with the computing time taken on a Silicon Graphics Indy workstatior
appropriate units. ldentical cycling patterns were used in each case, which was no
case in either of the comparisons [21, 22], namely fixed W-cycles, with the equation:
the coarsest grid solved using 5 cycles with Re100, 10 with Re= 400, and 15 with
Re = 1000. One postsmoothing and one presmoothing iteration were used, with resic
reevaluated prior to restriction.
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FIG.6. Maximum negative velocity on the centre line of flow in the driven cavity. (a}REO0, (b) Re= 1000.
<, Van Leer (present schemé)l, MUSCL (Lien & Leschziner, 1994)A, QUICK (Lien & Leschziner 1994);
O, Hybrid (Vanka 1986).

It is immediately seen from Table 1 that all the coupled methods require fewer cyc
to meet the convergence criterion than SIMPLE. On the other hand, the coupled mett
are more expensive per cycle, with the respective times per cycle for SIMPLE : SCC
CLGS-V : CLGS-H : SCAL being in the approximate ratios 1.0 : 1.6 : 1.6 : 1.2 : 1./
The computing time per cycle for CLGS-V is almost identical to that of SCGS. Not
however, that the computing time per cycle for the implementation with horizontal lir
sweeping is approximately 25% less than for vertical sweeping, despite the equivalenc
the number of arithmetic operations. This is presumably a consequence of the metha
data storage, where single-dimensional arrays are used to store all variables in horiz
rows (consecutive elements contain horizontal neighbours) as discussed in Section 3. ¢
SCAL uses both vertical and horizontal sweeps, the cycle time for SCAL lies between t
for CLGS-V and CLGS-H, meaning that both SCAL and CLGS-H are cheaper than SC(
This is in contrast to the findings in [12], where SCAL is reported to require 50% mo
computing time than SCGS.
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TABLE 1

597

Numbers of Multigrid Cycles and Computing Times Taken to Reach Convergence

for Different Smoothing Algorithms Applied to the Driven Cavity Problem

Re= 100 SIMPLE SCGS CLGS-V CLGS-H SCAL
32x 32 9(3.8s) 5(3.7s) 5(3.75) 5(3.1s) 5 (3.4s)
64 x 64 8 (14.1s) 4(11.8s) 4(12.0s) 5 (11.8s) 5 (13.2s)

128x 128 9(1m 9s) 4 (48.25) 4(50.25) 5 (47.7s) 5 (54.75)

Re= 400 SIMPLE SCGS CLGS-V CLGS-H SCAL
32x 32 12 (5.0s) 7 (6.6s) 8 (5.75) 8 (4.8s) 7 (5.4s)
64 x 64 10 (17.6s) 5 (15.8s) 6 (17.8s) 7 (17.7s) 6 (17.25)

128x 128 9 (1m 9s) 5 (1m 2s) 5 (1m 3s) 6 (57.2s) 5 (56.75)

Re= 1000 SIMPLE SCGS CLGS-V CLGS-H SCAL
32x 32 17 (7.0s) 10 (7.1s) 14 (9.7s) 12 (8.1s) 15 (11.0s)
64 x 64 13 (22.8s) 8 (26.8s) 10 (29.5s) 12 (30.1s) 11 (31.4s

128x 128 11(1m 24s) 6 (1m 17s) 7 (Im 27s) 10(1m 39s) 7 (1m 19s

The advantage of the coupled methods over SIMPLE is greatest at the lowest Rey!
number, which concurs with the results of [21, 22], although the advantage found he
rather lessthan in either of these other comparisons. The reasons for this may include tf
that the cycling patterns used here are identical, but there are other more definite rec
First, the differencing scheme used here is more complicated and takes more arith
operations to implement than the hybrid scheme used in these other two comparisons.
the discussion in Section 3, it is clear that the coupled schemes require many more
evaluations than does SIMPLE, and the relative costs of the additional work are bour
favour the scheme which requires fewest flux evaluations. Second, although the grids
are uniform and square for this problem, the code retains the capacity to treat grids w
are not uniform. Array variables are therefore required for the dimensions of the diffe!
control volumes, instead of the one real scalar variable which would otherwise have suf
and which would have surely been used in the other comparisons. The overheads assc
with this would also favour the scheme with fewest flux evaluations.

The convergence histories for the five smoothers are compared in Fig. 7 for the cor
tations on the 12& 128 grid and the asymptotic convergence rates for these calculati
are given in Table 2 (determined in each case by the average residual reduction ove
final four cycles). As expected, convergence rates fall in each case with increasing Rey
number, although the deterioration between=R&00 and Re= 400 is slight, except for

TABLE 2
Asymptotic Convergence Rates (Residual Reductions per Cycle) for the Different Smoothing
Algorithms Applied to the Driven Cavity Problem

Re SIMPLE SCGS CLGS-V CLGS-H SCAL
100 0.391 0.084 0.117 0.144 0.136
400 0.397 0.112 0.202 0.360 0.119
1000 0.495 0.309 0.356 0.430 0.371
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FIG. 7. Convergence histories of the computations of flow in the driven cavity. (a} Re0, (b) Re= 400,
(c) Re= 1000.

CLGS-H. Allthe coupled methods have better convergence rates than the decoupled me
SIMPLE and, of the coupled methods, SCGS consistently has the best convergence
over CLGS-V, which in turn is better than SCAL. The worst of the coupled smoothers
CLGS-H.

Convergence rates are often quoted in terms of the practical smoothingdatermined
from the residual reduction per cyoteby 1 = «¥/++v2) wherev; andv, are the numbers
of presmoothing and postsmoothing iterations, respectively, which are both unity in th
computations. The asymptotic practical smoothing rates corresponding to these converg
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FIG.8. Comparison of practical smoothing rates for the computation of flow in the driven o®vi§IMPLE
(Present)O, MGPC (Sivaloganathaet al., 1988);l, SCGS (Present];] , BLIMM (Sivalogantharet al., 1988);
A , CLGS (Present)A , SCGS/LS (Shakt al,, 1990).

rates are compared with those presented by other authors for this problem in Fig. 8.
rates obtained here with the SIMPLE and SCGS methods are compared with thos
[21] for computations, which, ostensibly, are identical implementations of the meth
used here. The rates for the vertical line solver CLGS-V are compared with those of
SCGS/LS algorithm [29]. These are not equivalent implementations for CLGS solves fo
variables in lines, while SCGS/LS solves only for the pressures. It is clear from Fig. 8
very similar convergence rates are being obtained in the present implementations to
previous results. This is significant, bearing in mind that the present results are asymy
rates (it is not clear that this is so for the other data) and, more importantly, that the pre
results are for a convective discretisation scheme which is very much less disipative
the hybrid scheme used in all these other implementations.

The conclusion from this section is that the coupled methods certainly have sup
convergence rates to those of the decoupled methods and, despite the greater comput
cost per cycle, the computing times are superior to those of the decoupled method, espe
atlow Reynolds numbers. The line solver CLGS performs bestwhenimplemented in ver
lines. If the data structure were changed so that variables were stored in vertical rows,
the times for vertical sweeping in Table 1 would be around 25% less than the values g
This would then mean that the line solver with vertical sweeping would be the fastest me
for this problem at all Reynolds numbers tried. Whether the effort of doing this would
repaid depends upon the relative performance obtained when applied to the computati
flows over obstacles, to which we now turn.

Neutral Flow Past Obstacles

In this section we compare the convergence rates of the multigrid methods with
different smoothers for laminar flow past two obstacles. High Reynolds number turbu
flows clearly have more application in practise and, indeed, a simple turbulence model
included in some of the previous computations [18]. However, it was felt that the sc
of the current investigation was already wide enough without including turbulence h
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FIG. 9. Streamlines for neutral flow over obstacles: (a) the vertical barries [88; (b) the vertical barrier,
Re= 100; (c) the cosine obstacle, Re100.

and in fact, we restrict ourselves to relatively low Reynolds numbers. Although the perf
mance for laminar flows at higher Reynolds numbers can clearly be tested, the result:
the driven cavity problem above indicate that any advantage of the coupled method is lik
to be greatest at low Reynolds number. There is a practical difficulty, too, in that for lamir
flow the downstream extent of the recirculation region behind the obstacle grows linee
with increasing Reynolds number. We have, therefore, performed computations for f|
over the vertical barrier at Re 50 and Re= 100, and flow over the cosine hill at Re 100.

A set of five grids was used to cover the domai2{, 60] x [0, 5], the finest of which con-
tains 320x 80 cells and the coarsest 2. The grids are nonuniform, but with expansion
ratios nowhere exceeding 1.05. Streamlines for neutral flow over the vertical barrier :
the cosine-shaped hill corresponding to the flows computed on the finest grid are show
Fig. 9.

The multigrid computations proceed in a manner similar to those for the driven cavi
with the addition of more complicated boundary conditions. Fixed W-cycles are used
before, with one presmoothing, one postsmoothing iteration, 10 iterations on the fir
grid and up to five multigrid levels. Initial computations were performed for flow ove
the vertical barrier, Re= 50, with the SIMPLE method and the three line-wise couplec
smoothers CLGS-V, CLGS-H, and SCAL. The convergence histories using the single
residual for these computations are shown in Fig. 10. CLGS-H performed the least wel
the coupled methods for the driven cavity, and it is clearly performing very poorly for th
problem. It would appear that sweeping in horizontal lines when the flow is aligned in tl
direction does not achieve effective smoothing. The incorporation of horizontal sweep
in a method utilising alternating directions presumably contributes to the relatively pc
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FIG. 10. Comparison of the convergence rates of SIMPLE with three coupled line solvers. Neutral flow c
the vertical barrier, Re= 50.

performance of SCAL too. Sweeping across the flow direction, on the other hand, apy
to be the most effective strategy for the coupled methods used here, and for this pro
CLGS-V has the best asymptotic convergence rate, although it is only marginally better
that of the SIMPLE method. The cycle times of the coupled methods for these flows
somewhat longer relative to that of SIMPLE when compared with the ratios given ea
and for the four methods SIMPLE : CLGS-V : CLGS-H : SCAL are in the ratios 1.0 : 2..
1.6 : 1.8. Although horizontal sweeping is again somewhat cheaper than vertical swee
the relatively poor convergence properties of CLGS-H and SCAL meant that no further
was made of them. The relative merits of SIMPLE and CLGS-V are discussed nextinn
detail, however.

Table 3 gives the performance of the SIMPLE method and CLGS implemented in vert
lines for these computations in terms of the number of multigrid cycles required to rea
prescribed level of convergence and the computing time taken. Convergence was mon
using sums of absolute values of residuals over the whole domain as well as the sing
residual described earlier. (The former residuals represent the net flux imbalance for
control volume and are not normalised by the control volume areas—because of thi
value of the I, residual is usually at least an order of magnitude smaller than any of
sums of absolute values.) The convergence criterion used in Table 3 is that the maxi
sum of absolute values over the three equations falls belod; e same criterion as [18].
It is seen that a reasonable level of grid independence is achieved for both smoothers

TABLE 3
Numbers of Multigrid Cycles and Computing Times Taken to Reach Convergence
for Neutral Flow Past Obstacles

Barrier, Re= 50 Barrier, Re= 100 Cosine, Re= 100
SIMPLE CLGS SIMPLE CLGS SIMPLE CLGS
80 x 20 12 (9.3s) 11 (20.4s) 21 (20.0s) 20 (49.0s) 15(17.2s) 13 (37.4s
160x 40 10 (30.1s) 9 (1m 3s) 15 (51.7s) 11 (1m 30s) 16 (1m 16s) 10 (Im 52

320x 80 10 (2m 12s) 11 (5m 13s) 12 (2m 48s) 14 (7m 12s) 15 (5m 6s) 10 (7m 44
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computing times increasing by approximately a factor of four as the number of grid ce
is doubled. For the vertical barrier the number of cycles tends to rise with the Reyno
number, as might be expected. It is also noticable that for the vertical barrier the numbe
cycles required is roughly the same for SIMPLE as for CLGS and neither method establis
an advantage in terms of convergence rate. The longer time per cycle for CLGS there
means that the SIMPLE method generally requires less than half the computing time.
is in contrast to the results for the driven cavity, where CLGS had a very much bet
convergence rate, leading to shorter computing times than SIMPLE, despite the greater
per cycle.

For the flow over the cosine hill, on the other hand, CLGS is consistently better th
SIMPLE in terms of convergence rate, requiring only two-thirds as many cycles for cc
vergence on the finer grids as SIMPLE. The comparative cycle times for the two me
ods are still in the approximate ratio SIMPLE : CLGS of 1.0 : 2.2, however, and tt
shorter time per cycle for SIMPLE means that CLGS takes at least 50% longer. The
convergence histories are shown in Fig. 11 for both flows with=RED0, where the residual
used now is the £ norm used before. For the flow over the vertical barrier it can be set

1 - Cycle Number
a 9 : : : : : } : : : |
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=
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FIG. 11. Convergence histories of the computations of neutral flow over obstacles with B: (a) The
vertical barrier; (b) the cosine obstacle.
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FIG. 12. Streamlines for stratified flow over obstacles with1.592(K = 1.0) and the hybrid scheme used
for the density equation: (a) the vertical barrier, R&0; (b) the vertical barrier, Re- 100; (c) the cosine obstacle,
Re= 100.

that the SIMPLE method actually has the better asymptotic rate of convergence, while
the flow over the cosine hill the asymptotic rate of CLGS is significantly better than tha
SIMPLE.

Stratified Flow Past Obstacles

The effects on the flow field of reducing the Froude number so that B/7hF,)
ranges from zero to unity have been described before [18, 26] and, as mentioned e
essentially consist of a reduction in the separation length from its value in neutral flow
a corresponding reduction in the value of the pressure drag. The former effect is cle
seen in streamlines for the case=K1.0 (Fig. 12) when compared with their counterpart:
in neutral flow (Fig. 9). It was shown in [18] that the SIMPLE method was an effecti
smoother over the range 8 K < 1 (1.592 < F, < oo) for laminar and turbulent flow
over the two obstacles, with computations performed at Froude number8RA 80 (K =
0.5), F, = 1.989(K = 0.8), and F, =1.592 (K = 1.0). Convergence was achieved so tha
sums of absolute values of residuals were reduced to at leabiriall cases tried with the
exception of laminar flow (Re= 100) over the cosine hillwhen K 1.0. This was explained
by the suggestion that this value of K marks the transition to unsteadiness and pet
convergence difficulties therefore might be expected. That they were not encountere
the barrier, when the Reynolds number was lower £R80), also suggests the possibility
that discrete ellipticity may be lostwhen Sc.Re combination in the density transport equz
becomes large.

The CLGS method with the addition of the modification for the density equation w
used with vertical sweeping in an attempt to provide a comparison with the performanc
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TABLE 4
Number of Multigrid Cycles and Computing Times Taken for Convergence for Stratified Flow
Past Obstacles (F = 1.592 K = 1.0) with the Hybrid Scheme Used for the Density Equation

Barrier, Re= 50 Barrier, Re= 100 Cosine, Re= 100
SIMPLE CLGS SIMPLE CLGS SIMPLE CLGS
80 x 20 14 (16.2s) 13 (37.6s) 21 (23.2s) 16 (54.4s) 15 (25.7s) 13 (57.5s)

160x 40 14 (Im5s)  13(2m24s)  15(Im9s) 13 (2m38s) 15 (1m 47s) 14 (4m 1s)
320x 80 12 (4m7s) 9 (8m 1s) 12(4m7s)  13(12m3s)  15(7m4ls) 16 (18m 34s

SIMPLE for stratified flows with the same Froude number values. However, convergel
difficulties were immediately found with the CLGS method for both obstacles at all ve
ues of k tried, however—even = 3.182, for which the value of K is well below the
transition value. This is in direct contrast to the results obtained in [18] with the SIMPL
method, and strongly suggests that greater robustness is derived from being able to sn
the velocity field independently from the density field, as is achieved with the decoupl
method.

To restore smoothing to the CLGS method and obtain a convergent multigrid algorit|
it therefore appeared necessary to increase the effective diffusivity coefficient in the der
transport equation. One way of achieving this is to relax the order of the discretisation u
for we have already seen that in the case of the driven cavity the results given by the
Leer scheme are comparatively very nondissipative. An obvious choice would be to use
hybrid scheme instead, which, in view of the small diffusive coefficient in the continuol
equation, would effectively mean first-order upwinding for the density throughout the flo
This had a dramatic effect, and convergent multigrid solutions could be now be achie
for all three Froude numbers mentioned earlier. In order to produce a valid compari:
the same modification was made to the code implementing the decoupled method ant
multigrid performance of both methods is summarised in Table 4/fer E592 (K= 1.0),
which were typical of the results obtained. The number of cycles required is roughly 1
same for both methods and for the vertical barrier again tends to rise with the Reync
number. For all cases the SIMPLE method is taking approximately half the time of CL(
or less. The asymptotic convergence rates for the two obstacles at this Froude numbe
Re=100 are compared in Fig. 13, which confirm that for the barrier SIMPLE still ha
the better asymptotic rate, as was the case in neutral flow. For the flow over the co:
hill, the advantage of CLGS in terms of convergence rate is now much less than for
corresponding neutral flow.

Although multigrid convergence can be achieved in this way, it is clearly at the exper
of spatial accuracy, for the use of a low order scheme for one equation is bound to deg
the accuracy of the solution as a whole. The double discretisation technique describe
Section 4 has been used successfully to generate a convergent multigrid solution techr
for all the cases described above with the accuracy of the Van Leer discretisation rest
to the density equation. This includes the case of the cosine hils T F, =1.592,
for which no converged multigrid solution was obtained in [18] and all the cases with t
coupled solution method for which no converged solutions were obtained at all. The det
of the cycles are as before with the exception that at least two postsmoothing iterati
on the finest grid were found necessary for convergence to be achieved. Table 5 give:
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FIG. 13. Convergence histories for the computation of stratified flow over obstacles with 186,
F,=1.592(K =1.0) and the hybrid scheme used for the density equation: (a) the vertical barrier; (b) the
sine obstacle.

corresponding performance characteristics for computations withlkD and Fig. 14 gives

the convergence histories with and without double discretisation for both methods or
finest grid. As expected convergence is not as rapid as with first order upwinding (Tab!
and at least half as many additional cycles are required to achieve the same conver

TABLE 5
Number of Multigrid Cycles and Computing Times Taken for Convergence for Stratified
Flow Past Obstacles (F = 1.592 K = 1.0) with the Van Leer Scheme and Double Discretisation
Used for the Density Equation

Barrier, Re= 50 Barrier, Re= 100 Cosine, Re= 100

SIMPLE CLGS SIMPLE CLGS SIMPLE CLGS

80 x 20 25 (47.4s) 25(1m39s) 35 (1m1ls) 33 (2m 6s) 29 (1m 6s) 33 (3m 22
160x 40 22 (2m55s) 22 (5m50s) 32 (4m25s) 30 (8m 25s) 25(4m6s) 30 (12m 11
320x 80 21(12m1ls) 15(18m38s) 23(13m54s) 20(25m31ls) 20(14mb56s) 29 (52m4
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FIG. 14. Convergence histories for the computation of stratified flow over the cosine obstacte,1R8,
F, = 1.592(K = 1.0) and the Van Leer scheme used for the density transport equation with and without dou
discretisationO, SIMPLE (without);®, SIMPLE (with); A, CLGS (without);A, CLGS (with).

level. The additional postsmoothing iterations mean that computing times are between
and three times longer than those in Table 4. This procedure is somewhat ad hoc, how
and efficiencies could doubtless be made.

The differences in the flow field computed with and without the Van Leer correction f
the density equation can be seen by comparing Fig. 12 with Fig. 15. Although there is i
apparent difference for the flow over the vertical barrier at=RBO0, there is a significant

|

fo .5 0 » ?9'1_1% 20 25 30 35 40

T§§§<<<ﬁ

910 50 5 1/6h 15 20 25 30 35 4
X

¢ 5
4_
{4
%_
0 T, /\ 1 1 1,
10 -5 0 5 10 15 20 25 30 35 40

x/ h

FIG. 15. Streamlines for stratified flow over obstacles with=F1.592(K = 1.0) and the Van Leer scheme
and double discretisation used for the density equation: (a) the vertical barrier,3Re(b) the vertical barrier,
Re= 100; (c) the cosine obstacle, Re100.
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FIG. 16. Effects of grid refinement on the results of computations of flow over the vertical barrier w
the two schemes for the density transport equation: (a) the length of the region of separated flow; (b) the
O, Hybrid, Re= 50; @, Van Leer, Re= 50; [, Hybrid, Re= 100; l, Van Leer, Re= 100.

difference at Re= 100, with a rather more extensive region of slowed fluid given by tt
computation with the Van Leer scheme. This region is less extensive in both computat
of the flow over the cosine obstacle, due to the influence of the surface boundary I
but, whereas no lee wave is perceptible in the computation with the hybrid scheme,
much more in evidence in the computation with the Van Leer scheme. That the gl
characteristics of the flow are also affected by the down-grading of the scheme for
density equation is illustrated for the flow over the vertical barrier in Fig. 16. Shown are
separation length, Fig. 16a, and the pressure drag, Fig. 16b, plotted against the square
grid spacing at the barrier tip for the computations with and without the Van Leer correct
at both Reynolds numbers. The results of the computations without the correction s
typical first-order behaviour and undue grid dependence, while those with the correc
show the second-order behaviour expected and much less dependence, especially b
the two finest grids.
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6. CONCLUSIONS

Multigrid computations with decoupled and coupled smoothing algorithms have be
presented and compared for flow in a driven cavity and then neutral and stably strati
flow over two-dimensional obstacles. Convergence rates for the driven cavity problem w
found to concur in general with those of other authors despite the less diffusive nat
of the convective differencing scheme used, and for this problem the fastest converge
rates are those of the coupled methods. Implementation in lines increases the effici
of the coupled method, however, and although convergence rates deteriorate some
computing times per cycle and overall can be reduced. Vertical line sweeping was fol
to produce better convergence rates than horizontal line sweeping, although because «
manner of data storage, horizontal line sweeping requires less computing time per multi
cycle. Changes to the data structure would mean that for the cavity problem vertical |
sweeping would be the fastest method on the finest grid used at all Reynolds numbers t

For the flows over obstacles sweeping in horizontal lines was found to have very p
convergence characteristics and, although the scheme incorporating sweeps in altern
directions is a great improvement, the best by far of the coupled methods tried utili
sweeping across the flow direction in vertical lines. The reasons underlying the superic
of vertical line sweeping for both these kinds of flows are not clear at present. Theoret
analysis for the single convection-diffusion equation [31] indicates that symmetric (forwe
followed by backward) line sweeping should be robust when implemented in horizon
lines as well as vertical, but the very poor performance of horizontal line smoothing for t
obstacle flows suggests that flow direction and/or grid nonuniformity are decisive factc
The relatively poor performance for the recirculating flows of the driven cavity is somewt
puzzling, however, but at least it confirms other numerical evidence for the same prob
[23].

The rapid convergence rates of some of the coupled methods for the driven cavity prob
were notreproduced for the flows over obstacles, however, even atthe low Reynolds numn
used, and similar convergence rates are achieved for both coupled and decoupled met
For flow over a vertical barrier, the asymptotic convergence rate of SIMPLE is actua
better than that of the coupled method in both neutral and stably stratified flow. The sho
computing time per cycle of the SIMPLE algorithm means that convergence to a prescti
level of accuracy can be achieved in approximately half the computing time required
the coupled method. Even with a change of data structure the decoupled method woul
faster.

For the stratified flows the coupled method was further found to be deficient in tt
convergence could not be achieved for any value of the Froude number when a higt
der differencing scheme was used for the density transport equation. This contrasts
the results of computations with the decoupled algorithm reported previously [18], wh
converged solutions were obtained in all but one case (although asymptotic converge
rates were not investigated). The reason for this is thought to relate to the small value of
diffusion coefficient in the density transport equation, where consequent lack of disct
ellipticity may lead to marginal smoothing. Decoupling the density field from the velo
ity field ensures that each can be smoothed independently of the other and to a sulffic
degree. When the velocity and density fields are treated together as a locally couplec
however, the results here suggest that difficulties in smoothing one variable will prev
effective smoothing for all. Although further work is necessary to fully confirm this, tw
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remedies to overcome the problem have been tried. Reducing the order of the discr
tion to first-order upwinding allowed the computations to converge but at the expens
spatial accuracy. Accuracy and convergence can be achieved together by the use of c
discretisation techniques, although computing times are now somewhat longer.

The multigrid scheme described here was used in [18] for stably stratified flows c
two-dimensional obstacles which may be steady or unsteady, laminar or turbulent,
the extensions to deal with flows around three-dimensional obstacles are anticipated
evidence given here suggests that, on grounds of efficiency and robustness, decc
methods such as the SIMPLE algorithm are likely to continue to be the most approp
choice of smoother for these kinds of flows. There may well be formulations of a cour
method which can outperform decoupled methods, but those implemented here dt
appear to be among them.
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